Web-Security

This presentation is prepared from slides provided by Computer Networking : A Top Down Approach 6th edition by Jim Kurose, Keith Ross and slides form Henric Johnson

Blekinge Institute of Technology, Sweden

http://www.its.bth.se/staff/hjo/

henric.johnson@bth.se

Mohammad Homayoon Fayez, Zealand Institute of Business and Technology, Roskilde, Zealand Denmark

Outline

- Web Security Considerations
- Secure Socket Layer (SSL) and Transport Layer
 Security (TLS)
- Secure Electronic Transaction (SET)
- Recommended Reading and WEB Sites

Web Security Considerations

- The WEB is very visible.
- Complex software hide many security flaws.
- * Web servers are easy to configure and manage.
- Users are not aware of the risks.

Security facilities in the TCP/IP protocol stack

НТТР	FTP	SMTP	
ТСР			
IP/IPSec			

(a) Network Level

HTTP FTP		SMTP	
SSL or TLS			
ТСР			
IP			

(b) Transport Level

	S/MIME	PGP	SET
Kerberos	SMTP		НТТР
UDP	ТСР		
IP			

(c) Application Level

SSL: Secure Sockets Layer

- widely deployed security protocol
 - supported by almost all browsers, web servers
 - https
 - billions \$/year over SSL
- mechanisms: [Woo 1994], implementation: Netscape
- variation -TLS: transport layer security, RFC 2246
- provides
 - confidentiality
 - integrity
 - authentication

original goals:

- Web e-commerce transactions
- encryption (especially credit-card numbers)
- Web-server authentication
- optional client authentication
- minimum hassle in doing business with new merchant
- available to all TCP applications
 - secure socket interface

SSL and TCP/IP

normal application

application with SSL

- SSL provides application programming interface (API) to applications
- C and Java SSL libraries/classes readily available

SSL record protocol

record header: content type; version; length

MAC: includes sequence number, MAC key M_x fragment: each SSL fragment 2¹⁴ bytes (~16 Kbytes)

1 byte	2 bytes	3 bytes		
content type	SSL version	length		
data				
	MAC			

data and MAC encrypted (symmetric algorithm)

SSL Record Protocol Payload

1 byte	1 byte	3 bytes	0 bytes
1	Туре	Length	Content

(a) Change Cipher Spec Protocol

1 byte 1 byte

Level Alert

(c) Handshake Protocol

1 byte

OpaqueContent

(b) Alert Protocol

(d) Other Upper-Layer Protocol (e.g., HTTP)

Could do something like PGP:

- but want to send byte streams & interactive data
- want set of secret keys for entire connection
- want certificate exchange as part of protocol: handshake phase

SSL cipher suite

- cipher suite
 - public-key algorithm
 - symmetric encryption algorithm
 - MAC algorithm
- SSL supports several cipher suites
- negotiation: client, server agree on cipher suite
 - client offers choice
 - server picks one

common SSL symmetric ciphers

- DES Data Encryption Standard: block
- 3DES Triple strength: block
- RC2 Rivest Cipher 2: block
- RC4 Rivest Cipher 4: stream
- SSL Public key encryption

RSA

Handshake Protocol

- The most complex part of SSL.
- Allows the server and client to authenticate each other.
- Negotiate encryption, MAC algorithm and cryptographic keys.
- Used before any application data are transmitted.

SSL: handshake (I)

Purpose

- I. server authentication
- 2. negotiation: agree on crypto algorithms
- 3. establish keys
- 4. client authentication (optional)

SSL: handshake (2)

- client sends list of algorithms it supports, along with client nonce
- server chooses algorithms from list; sends back: choice + certificate + server nonce
- 3. client verifies certificate, extracts server's public key, generates pre_master_secret, encrypts with server's public key, sends to server
- 4. client and server independently compute encryption and MAC keys from pre_master_secret and nonces
- 5. client sends a MAC of all the handshake messages
- 6. server sends a MAC of all the handshake messages

SSL: handshaking (3)

last 2 steps protect handshake from tampering

- client typically offers range of algorithms, some strong, some weak
- man-in-the middle could delete stronger algorithms from list
- Iast 2 steps prevent this
 - last two messages are encrypted

SSL: handshaking (4)

- why two random nonces?
- suppose Trudy sniffs all messages between Alice
 & Bob
- next day, Trudy sets up TCP connection with Bob, sends exact same sequence of records
 - Bob (Amazon) thinks Alice made two separate orders for the same thing
 - solution: Bob sends different random nonce for each connection. This causes encryption keys to be different on the two days
 - Trudy's messages will fail Bob's integrity check

Key derivation

- client nonce, server nonce, and pre-master secret input into pseudo random-number generator.
 - produces master secret
- master secret and new nonces input into another random-number generator: "key block"
 - because of resumption: TBD
- key block sliced and diced:
 - client MAC key
 - server MAC key
 - client encryption key
 - server encryption key
 - client initialization vector (IV)
 - server initialization vector (IV)

Transport Layer Security

- The same record format as the SSL record format.
- Defined in RFC 2246.
- Similar to SSLv3.
- Differences in the:
 - version number
 - message authentication code
 - pseudorandom function
 - alert codes
 - cipher suites
 - client certificate types
 - certificate_verify and finished message
 - cryptographic computations
 - padding

Secure Electronic Transactions

- An open encryption and security specification.
- Protect credit card transaction on the Internet.
- Companies involved:
 - MasterCard, Visa, IBM, Microsoft, Netscape, RSA, Terisa and Verisign
- Not a payment system.
- Set of security protocols and formats.

SET Services

- Provides a secure communication channel in a transaction.
- Provides tust by the use of X.509v3 digital certificates.
- Ensures privacy.

SET Overview

- ✤ Key Features of SET:
 - Confidentiality of information
 - Integrity of data
 - Cardholder account authentication
 - Merchant authentication

SET Participants

Sequence of events for transactions

- I. The customer opens an account.
- 2. The customer receives a certificate.
- 3. Merchants have their own certificates.
- 4. The customer places an order.
- 5. The merchant is verified.
- 6. The order and payment are sent.
- 7. The merchant request payment authorization.
- 8. The merchant confirm the order.
- 9. The merchant provides the goods or service.
- 10. The merchant requests payments.

Dual Signature

$DS = E_{KR_c}[H(H(PI) \| H(OI))]$

- PI = Payment Information OI = Order Information H = Hash function (SHA-1) || = Concatenation
- PIMD = PI message digest
- OIMD = OI message digest
- POMD = Payment Order message digest
 - E = Encryption (RSA)
 - KR_c = Customer's private signature key

Payment processing

Cardholder sends Purchase Request

Payment processing

Merchant Verifies Customer Purchase Request

Payment processing

- Payment Authorization:
 - Authorization Request
 - Authorization Response
- Payment Capture:
 - Capture Request
 - Capture Response

Recommended Reading and WEB sites

- Drew, G. Using SET for Secure Electronic Commerce. Prentice Hall, 1999
- Garfinkel, S., and Spafford, G. Web Security & Commerce. O'Reilly and Associates, 1997
- MasterCard SET site
- Visa Electronic Commerce Site
- SETCo (documents and glossary of terms)